

Rainer Kurz
Solar Turbines Incorporated

- How Does it Work?
- Gas Turbine Components
- Gas Turbine Performance
- Gas Turbine Applications

This is a Gas Turbine.

How does it work?

Gas Turbine Movie

Solar Turbines

- Compressor Pumps Air into Combustion Chamber
- Fuel in Gaseous or Liquid Spray Form Injected into Combustion Chamber and Burned
- Continuously Expanding Combustion Products Directed Through Stationary Airfoils
 - react against the blades of a turbine wheel, causing the shaft to turn, driving the compressor
- Remaining High Energy Gas Can be Used
 - expansion across a nozzle (propulsion)
 - expansion across another turbine stage (shaft power)

Simple Cycle Gas Turbines as Aircraft Engines and Land Based Prime Movers

- Use One or Multiple Compressors
- Have Combustor
- Use One or Multiple Turbines to Drive Compressor(s)
- Aeroengines Generate Propulsion Either by a Hot Gas Jet, Driven Fan or Propeller, or Combination
- Industrial Gas Turbines Generate Mechanical Power Using Turbine Driven by Hot Gas

Brayton Cycle (Simple Cycle Gas Turbine)

Gas Turbine Components

Engine External Components

Industrial Engine on Skid

The Compressor Section

- Axial or Centrifugal Flow
- Axial Flow
 - higher efficiency
 - higher flow
 - more stages
- Centrifugal Compressors on smaller engines and some mid-size industrial engines
 - less stages
 - rugged
 - simple
- Driven by the Turbine on a Common Shaft
- Compressor Uses 2/3 of the Fuel Energy
 - That's why keeping it efficient (read CLEAN) is so important!

Axial Compressor

- Airflow Parallel to Rotor Axis
- Air Compressed in "Stages"
 - row of moving blades followed by row of stationary blades (stators) is one stage.
 - Moving blades impart kinetic energy
 - stators recover the kinetic energy as pressure and redirect the flow to the next stage at the optimum angle

COMPRESSOR CASE LEFT HALF REMOVED STATORS INSTALLED

TR99027x

- Modern Compressor Designs are Extremely Efficient
 - gas turbine performance rating depends greatly on the compressor efficiency
- High Performance
 Made Possible by
 Advanced
 Aerodynamics,
 Coatings, and Small
 Blade Tip Clearances
- Even Small Amounts of Deposits on Compressor Blades May Cause Large Performance Losses

- Also Known as the "Burner"
- Must be Compact and Provide "Even Temperature Distribution of Hot Gases to the Turbine
- Three Basic Configurations:
 - annular
 - can
 - can-annular

Annular Combustor

Combustor
Liner (requires
intensive cooling)

Combustor Design

Annular

 Donut shaped, single, continuous chamber that encircles the turbine

Can-annular

 multiple, single burners ("cans") evenly spaced around the rotor shaft

One or more
 combustion chambers
 mounted external
 to the gas turbine body

- Used to introduce fuel into the combustion chamber.
- Can be for single or dual fuel
- Fuel can be mixed with combustion air either...
 - in the combustor (standard combustion system)
 - pre-mixed prior to entering combustor (lean pre-mix, DLN (dry-low-Nox), DLE (dry low emissions), (SoLoNOx)

Dry-Low-NOx injector

Solar Mars Injector
Standard vs SoloNOx

- Two Basic Types Radial and <u>Axial</u>
 - Almost all industrial Gas Turbines use axial flow turbines
- Like the Compressor, Turbine Expansion Takes Place in "Stages"

a row of stationary blades (nozzles)
 followed by a row of moving blades
 e one stage.

Two Stage Axial Turbine

Turbine Nozzle Segment

- First Stage Turbine Nozzle Sees the Hottest Temperatures
 - Referred to as TIT (Turbine Inlet Temperature) or TRIT (Turbine Rotor Inlet Temperature)
 - Modern engines run TRIT as high as 2200 F (some even higher)

Blade Cooling Schemes

Convection Cooling

Film Cooling

Temperature Definition

Gas Turbine Performance Characteristics

Gas Turbine Performance vs. Ambient Temperature

Efficiency at Part Load Operation

Gas Turbine Thermal Efficiency η/η_{ref} versus Load P/P_{max} (Typical, for 3 arbitrarily selected industrial engines)

Gas Turbine Applications

Industrial Applications

Gas Turbine Driven Compressor Set

Operational Flexibility Managing Varying Demand

Operating Points in a Compressor Station

Gas Turbine Driven Generator

Base Load (Continuous Duty)

 Designed to operate 6,000-8,000 hrs per year (more or less continuously)

Peak Load

 Designed to operate approximately 1,000 hours per year (started during peak power demands, usually about once per day)

Stand-By

- Designed to operate less than 1,000 hours per year (started if other systems fail)
- A "Standby Duty" unit is operated as a backup to, not in parallel with, a normal source of power.
- Typical operation ranges from 50 to 100 hours per year with one start per week.

Base and Peak Load Units

Firing Temperature

- Output Power
- ExhaustTemperature
- Life
- Maintenance intervals/Cost of Maintenance

Base Load, Peak Load and Stand-By Units

- Engine Life depends on Firing Temperature (and number of starts*)
 - Thus, a peak load unit can be fired at higher temperatures without any design changes
 - Higher Firing Temperature means more power, but shorter engine life.

^{*} According to some manufacturers

